Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Infect Dis ; 226(11): 1887-1896, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2135319

RESUMEN

BACKGROUND: Despite the advent of safe and effective coronavirus disease 2019 vaccines, pervasive inequities in global vaccination persist. METHODS: We projected health benefits and donor costs of delivering vaccines for up to 60% of the population in 91 low- and middle-income countries (LMICs). We modeled a highly contagious (Re at model start, 1.7), low-virulence (infection fatality ratio [IFR], 0.32%) "Omicron-like" variant and a similarly contagious "severe" variant (IFR, 0.59%) over 360 days, accounting for country-specific age structure and healthcare capacity. Costs included vaccination startup (US$630 million) and per-person procurement and delivery (US$12.46/person vaccinated). RESULTS: In the Omicron-like scenario, increasing current vaccination coverage to achieve at least 15% in each of the 91 LMICs would prevent 11 million new infections and 120 000 deaths, at a cost of US$0.95 billion, for an incremental cost-effectiveness ratio (ICER) of US$670/year of life saved (YLS). Increases in vaccination coverage to 60% would additionally prevent up to 68 million infections and 160 000 deaths, with ICERs

Asunto(s)
COVID-19 , Países en Desarrollo , Humanos , Análisis Costo-Beneficio , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vacunación
2.
MEDLINE; 2020.
No convencional en Inglés | MEDLINE | ID: grc-750467

RESUMEN

Background Healthcare resource constraints in low and middle-income countries necessitate selection of cost-effective public health interventions to address COVID-19. Methods We developed a dynamic COVID-19 microsimulation model to evaluate clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal, South Africa. Interventions assessed were Healthcare Testing (HT), where diagnostic testing is performed only for those presenting to healthcare centres;Contact Tracing (CT) in households of cases;Isolation Centres (IC), for cases not requiring hospitalisation;community health worker-led Mass Symptom Screening and diagnostic testing for symptomatic individuals (MS);and Quarantine Centres (QC), for contacts who test negative. Given uncertainties about epidemic dynamics in South Africa, we evaluated two main epidemic scenarios over 360 days, with effective reproduction numbers (R e ) of 1.5 and 1.2. We compared HT, HT+CT, HT+CT+IC, HT+CT+IC+MS, HT+CT+IC+QC, and HT+CT+IC+MS+QC, considering strategies with incremental cost-effectiveness ratio (ICER) <US$1,290/year-of-life saved (YLS) to be cost-effective. Findings With R e 1.5, HT resulted in the most COVID-19 deaths and lowest costs over 360 days. Compared with HT, HT+CT+IC+MS reduced mortality by 76%, increased costs by 16%, and was cost-effective (ICER $350/YLS). HT+CT+IC+MS+QC provided the greatest reduction in mortality, but increased costs by 95% compared with HT+CT+IC+MS and was not cost-effective (ICER $8,000/YLS). With R e 1.2, HT+CT+IC+MS was the least costly strategy, and HT+CT+IC+MS+QC was not cost-effective (ICER $294,320/YLS). Interpretation In South Africa, a strategy of household contact tracing, isolation, and mass symptom screening would substantially reduce COVID-19 mortality and be cost-effective. Adding quarantine centres for COVID-19 contacts is not cost-effective.

3.
Nat Commun ; 12(1): 6238, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1493104

RESUMEN

Low- and middle-income countries are implementing COVID-19 vaccination strategies in light of varying vaccine efficacies and costs, supply shortages, and resource constraints. Here, we use a microsimulation model to evaluate clinical outcomes and cost-effectiveness of a COVID-19 vaccination program in South Africa. We varied vaccination coverage, pace, acceptance, effectiveness, and cost as well as epidemic dynamics. Providing vaccines to at least 40% of the population and prioritizing vaccine rollout prevented >9 million infections and >73,000 deaths and reduced costs due to fewer hospitalizations. Model results were most sensitive to assumptions about epidemic growth and prevalence of prior immunity to SARS-CoV-2, though the vaccination program still provided high value and decreased both deaths and health care costs across a wide range of assumptions. Vaccination program implementation factors, including prompt procurement, distribution, and rollout, are likely more influential than characteristics of the vaccine itself in maximizing public health benefits and economic efficiency.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Análisis Costo-Beneficio/métodos , SARS-CoV-2/inmunología , COVID-19/inmunología , Hospitalización/estadística & datos numéricos , Humanos , SARS-CoV-2/patogenicidad , Sudáfrica
4.
Lancet Glob Health ; 9(2): e120-e129, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-922185

RESUMEN

BACKGROUND: Health-care resource constraints in low-income and middle-income countries necessitate the identification of cost-effective public health interventions to address COVID-19. We aimed to develop a dynamic COVID-19 microsimulation model to assess clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal province, South Africa. METHODS: We compared different combinations of five public health interventions: health-care testing alone, where diagnostic testing is done only for individuals presenting to health-care centres; contact tracing in households of cases; isolation centres, for cases not requiring hospital admission; mass symptom screening and molecular testing for symptomatic individuals by community health-care workers; and quarantine centres, for household contacts who test negative. We calibrated infection transmission rates to match effective reproduction number (Re) estimates reported in South Africa. We assessed two main epidemic scenarios for a period of 360 days, with an Re of 1·5 and 1·2. Strategies with incremental cost-effectiveness ratio (ICER) of less than US$3250 per year of life saved were considered cost-effective. We also did sensitivity analyses by varying key parameters (Re values, molecular testing sensitivity, and efficacies and costs of interventions) to determine the effect on clinical and cost projections. FINDINGS: When Re was 1·5, health-care testing alone resulted in the highest number of COVID-19 deaths during the 360-day period. Compared with health-care testing alone, a combination of health-care testing, contact tracing, use of isolation centres, mass symptom screening, and use of quarantine centres reduced mortality by 94%, increased health-care costs by 33%, and was cost-effective (ICER $340 per year of life saved). In settings where quarantine centres were not feasible, a combination of health-care testing, contact tracing, use of isolation centres, and mass symptom screening was cost-effective compared with health-care testing alone (ICER $590 per year of life saved). When Re was 1·2, health-care testing, contact tracing, use of isolation centres, and use of quarantine centres was the least costly strategy, and no other strategies were cost-effective. In sensitivity analyses, a combination of health-care testing, contact tracing, use of isolation centres, mass symptom screening, and use of quarantine centres was generally cost-effective, with the exception of scenarios in which Re was 2·6 and when efficacies of isolation centres and quarantine centres for transmission reduction were reduced. INTERPRETATION: In South Africa, strategies involving household contact tracing, isolation, mass symptom screening, and quarantining household contacts who test negative would substantially reduce COVID-19 mortality and would be cost-effective. The optimal combination of interventions depends on epidemic growth characteristics and practical implementation considerations. FUNDING: US National Institutes of Health, Royal Society, Wellcome Trust.


Asunto(s)
COVID-19/prevención & control , Epidemias/prevención & control , Salud Pública/economía , Adolescente , Adulto , COVID-19/epidemiología , Niño , Preescolar , Simulación por Computador , Análisis Costo-Beneficio , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , Modelos Biológicos , Salud Pública/métodos , Sudáfrica/epidemiología , Adulto Joven
5.
medRxiv ; 2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: covidwho-636369

RESUMEN

BACKGROUND: Healthcare resource constraints in low and middle-income countries necessitate selection of cost-effective public health interventions to address COVID-19. METHODS: We developed a dynamic COVID-19 microsimulation model to evaluate clinical and economic outcomes and cost-effectiveness of epidemic control strategies in KwaZulu-Natal, South Africa. Interventions assessed were Healthcare Testing (HT), where diagnostic testing is performed only for those presenting to healthcare centres; Contact Tracing (CT) in households of cases; Isolation Centres (IC), for cases not requiring hospitalisation; community health worker-led Mass Symptom Screening and molecular testing for symptomatic individuals (MS); and Quarantine Centres (QC), for household contacts who test negative. Given uncertainties about epidemic dynamics in South Africa, we evaluated two main epidemic scenarios over 360 days, with effective reproduction numbers (Re) of 1·5 and 1·2. We compared HT, HT+CT, HT+CT+IC, HT+CT+IC+MS, HT+CT+IC+QC, and HT+CT+IC+MS+QC, considering strategies with incremental cost-effectiveness ratio (ICER)

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA